↳ ITRS
↳ ITRStoIDPProof
z
eval_3(i, j, l, r, n) → Cond_eval_35(&&(&&(>=@z(r, j), >@z(j, -@z(r, 1@z))), >=@z(j, 1@z)), i, j, l, r, n)
eval_1(i, j, l, r, n) → Cond_eval_1(>@z(2@z, l), i, j, l, r, n)
eval_3(i, j, l, r, n) → Cond_eval_3(&&(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), >=@z(j, 1@z)), i, j, l, r, n)
eval_4(i, j, l, r, n) → Cond_eval_4(&&(&&(>=@z(l, 2@z), >=@z(l, 1@z)), >=@z(r, 2@z)), i, j, l, r, n)
Cond_eval_3(TRUE, i, j, l, r, n) → eval_3(+@z(j, 1@z), +@z(*@z(2@z, j), 2@z), l, r, n)
Cond_eval_41(TRUE, i, j, l, r, n) → eval_2(i, j, l, -@z(r, 1@z), n)
eval_3(i, j, l, r, n) → Cond_eval_34(&&(>=@z(r, j), >@z(j, -@z(r, 1@z))), i, j, l, r, n)
Cond_eval_31(TRUE, i, j, l, r, n) → eval_4(i, j, l, r, n)
Cond_eval_4(TRUE, i, j, l, r, n) → eval_2(i, j, -@z(l, 1@z), r, n)
Cond_eval_1(TRUE, i, j, l, r, n) → eval_2(i, j, l, -@z(r, 1@z), n)
Cond_eval_32(TRUE, i, j, l, r, n) → eval_3(j, *@z(2@z, j), l, r, n)
Cond_eval_2(TRUE, i, j, l, r, n) → eval_3(l, *@z(2@z, l), l, r, n)
Cond_eval_33(TRUE, i, j, l, r, n) → eval_4(i, +@z(j, 1@z), l, r, n)
eval_2(i, j, l, r, n) → Cond_eval_2(>=@z(r, 2@z), i, j, l, r, n)
Cond_eval_34(TRUE, i, j, l, r, n) → eval_4(i, j, l, r, n)
eval_4(i, j, l, r, n) → Cond_eval_41(&&(&&(>@z(2@z, l), >=@z(l, 1@z)), >=@z(r, 2@z)), i, j, l, r, n)
Cond_eval_35(TRUE, i, j, l, r, n) → eval_3(j, *@z(2@z, j), l, r, n)
eval_3(i, j, l, r, n) → Cond_eval_31(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), i, j, l, r, n)
eval_1(i, j, l, r, n) → Cond_eval_11(>=@z(l, 2@z), i, j, l, r, n)
eval_3(i, j, l, r, n) → Cond_eval_33(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), i, j, l, r, n)
Cond_eval_11(TRUE, i, j, l, r, n) → eval_2(i, j, -@z(l, 1@z), r, n)
eval_3(i, j, l, r, n) → Cond_eval_32(&&(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), >=@z(j, 1@z)), i, j, l, r, n)
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
eval_3(i, j, l, r, n) → Cond_eval_35(&&(&&(>=@z(r, j), >@z(j, -@z(r, 1@z))), >=@z(j, 1@z)), i, j, l, r, n)
eval_1(i, j, l, r, n) → Cond_eval_1(>@z(2@z, l), i, j, l, r, n)
eval_3(i, j, l, r, n) → Cond_eval_3(&&(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), >=@z(j, 1@z)), i, j, l, r, n)
eval_4(i, j, l, r, n) → Cond_eval_4(&&(&&(>=@z(l, 2@z), >=@z(l, 1@z)), >=@z(r, 2@z)), i, j, l, r, n)
Cond_eval_3(TRUE, i, j, l, r, n) → eval_3(+@z(j, 1@z), +@z(*@z(2@z, j), 2@z), l, r, n)
Cond_eval_41(TRUE, i, j, l, r, n) → eval_2(i, j, l, -@z(r, 1@z), n)
eval_3(i, j, l, r, n) → Cond_eval_34(&&(>=@z(r, j), >@z(j, -@z(r, 1@z))), i, j, l, r, n)
Cond_eval_31(TRUE, i, j, l, r, n) → eval_4(i, j, l, r, n)
Cond_eval_4(TRUE, i, j, l, r, n) → eval_2(i, j, -@z(l, 1@z), r, n)
Cond_eval_1(TRUE, i, j, l, r, n) → eval_2(i, j, l, -@z(r, 1@z), n)
Cond_eval_32(TRUE, i, j, l, r, n) → eval_3(j, *@z(2@z, j), l, r, n)
Cond_eval_2(TRUE, i, j, l, r, n) → eval_3(l, *@z(2@z, l), l, r, n)
Cond_eval_33(TRUE, i, j, l, r, n) → eval_4(i, +@z(j, 1@z), l, r, n)
eval_2(i, j, l, r, n) → Cond_eval_2(>=@z(r, 2@z), i, j, l, r, n)
Cond_eval_34(TRUE, i, j, l, r, n) → eval_4(i, j, l, r, n)
eval_4(i, j, l, r, n) → Cond_eval_41(&&(&&(>@z(2@z, l), >=@z(l, 1@z)), >=@z(r, 2@z)), i, j, l, r, n)
Cond_eval_35(TRUE, i, j, l, r, n) → eval_3(j, *@z(2@z, j), l, r, n)
eval_3(i, j, l, r, n) → Cond_eval_31(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), i, j, l, r, n)
eval_1(i, j, l, r, n) → Cond_eval_11(>=@z(l, 2@z), i, j, l, r, n)
eval_3(i, j, l, r, n) → Cond_eval_33(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), i, j, l, r, n)
Cond_eval_11(TRUE, i, j, l, r, n) → eval_2(i, j, -@z(l, 1@z), r, n)
eval_3(i, j, l, r, n) → Cond_eval_32(&&(&&(>=@z(r, j), >=@z(-@z(r, 1@z), j)), >=@z(j, 1@z)), i, j, l, r, n)
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(4) -> (7), if ((l[4] →* l[7])∧(r[4] →* r[7])∧(i[4] →* i[7])∧(j[4] →* j[7])∧(n[4] →* n[7])∧(>=@z(l[4], 2@z) →* TRUE))
(5) -> (2), if ((-@z(r[5], 1@z) →* r[2])∧(n[5] →* n[2])∧(j[5] →* j[2])∧(l[5] →* l[2])∧(i[5] →* i[2]))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(6) -> (19), if ((r[6] →* r[19])∧(n[6] →* n[19])∧(j[6] →* j[19])∧(l[6] →* l[19])∧(i[6] →* i[19]))
(7) -> (2), if ((r[7] →* r[2])∧(n[7] →* n[2])∧(j[7] →* j[2])∧(-@z(l[7], 1@z) →* l[2])∧(i[7] →* i[2]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(10) -> (2), if ((r[10] →* r[2])∧(n[10] →* n[2])∧(j[10] →* j[2])∧(-@z(l[10], 1@z) →* l[2])∧(i[10] →* i[2]))
(11) -> (2), if ((-@z(r[11], 1@z) →* r[2])∧(n[11] →* n[2])∧(j[11] →* j[2])∧(l[11] →* l[2])∧(i[11] →* i[2]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(12) -> (19), if ((r[12] →* r[19])∧(n[12] →* n[19])∧(j[12] →* j[19])∧(l[12] →* l[19])∧(i[12] →* i[19]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(17) -> (19), if ((r[17] →* r[19])∧(n[17] →* n[19])∧(+@z(j[17], 1@z) →* j[19])∧(l[17] →* l[19])∧(i[17] →* i[19]))
(18) -> (5), if ((l[18] →* l[5])∧(r[18] →* r[5])∧(i[18] →* i[5])∧(j[18] →* j[5])∧(n[18] →* n[5])∧(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)) →* TRUE))
(19) -> (10), if ((l[19] →* l[10])∧(r[19] →* r[10])∧(i[19] →* i[10])∧(j[19] →* j[10])∧(n[19] →* n[10])∧(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)) →* TRUE))
(20) -> (11), if ((l[20] →* l[11])∧(r[20] →* r[11])∧(i[20] →* i[11])∧(j[20] →* j[11])∧(n[20] →* n[11])∧(>@z(2@z, l[20]) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(4) -> (7), if ((l[4] →* l[7])∧(r[4] →* r[7])∧(i[4] →* i[7])∧(j[4] →* j[7])∧(n[4] →* n[7])∧(>=@z(l[4], 2@z) →* TRUE))
(5) -> (2), if ((-@z(r[5], 1@z) →* r[2])∧(n[5] →* n[2])∧(j[5] →* j[2])∧(l[5] →* l[2])∧(i[5] →* i[2]))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(6) -> (19), if ((r[6] →* r[19])∧(n[6] →* n[19])∧(j[6] →* j[19])∧(l[6] →* l[19])∧(i[6] →* i[19]))
(7) -> (2), if ((r[7] →* r[2])∧(n[7] →* n[2])∧(j[7] →* j[2])∧(-@z(l[7], 1@z) →* l[2])∧(i[7] →* i[2]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(10) -> (2), if ((r[10] →* r[2])∧(n[10] →* n[2])∧(j[10] →* j[2])∧(-@z(l[10], 1@z) →* l[2])∧(i[10] →* i[2]))
(11) -> (2), if ((-@z(r[11], 1@z) →* r[2])∧(n[11] →* n[2])∧(j[11] →* j[2])∧(l[11] →* l[2])∧(i[11] →* i[2]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(12) -> (19), if ((r[12] →* r[19])∧(n[12] →* n[19])∧(j[12] →* j[19])∧(l[12] →* l[19])∧(i[12] →* i[19]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(17) -> (19), if ((r[17] →* r[19])∧(n[17] →* n[19])∧(+@z(j[17], 1@z) →* j[19])∧(l[17] →* l[19])∧(i[17] →* i[19]))
(18) -> (5), if ((l[18] →* l[5])∧(r[18] →* r[5])∧(i[18] →* i[5])∧(j[18] →* j[5])∧(n[18] →* n[5])∧(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)) →* TRUE))
(19) -> (10), if ((l[19] →* l[10])∧(r[19] →* r[10])∧(i[19] →* i[10])∧(j[19] →* j[10])∧(n[19] →* n[10])∧(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)) →* TRUE))
(20) -> (11), if ((l[20] →* l[11])∧(r[20] →* r[11])∧(i[20] →* i[11])∧(j[20] →* j[11])∧(n[20] →* n[11])∧(>@z(2@z, l[20]) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(12) -> (19), if ((r[12] →* r[19])∧(n[12] →* n[19])∧(j[12] →* j[19])∧(l[12] →* l[19])∧(i[12] →* i[19]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(19) -> (10), if ((l[19] →* l[10])∧(r[19] →* r[10])∧(i[19] →* i[10])∧(j[19] →* j[10])∧(n[19] →* n[10])∧(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)) →* TRUE))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(10) -> (2), if ((r[10] →* r[2])∧(n[10] →* n[2])∧(j[10] →* j[2])∧(-@z(l[10], 1@z) →* l[2])∧(i[10] →* i[2]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(18) -> (5), if ((l[18] →* l[5])∧(r[18] →* r[5])∧(i[18] →* i[5])∧(j[18] →* j[5])∧(n[18] →* n[5])∧(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)) →* TRUE))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(17) -> (19), if ((r[17] →* r[19])∧(n[17] →* n[19])∧(+@z(j[17], 1@z) →* j[19])∧(l[17] →* l[19])∧(i[17] →* i[19]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(5) -> (2), if ((-@z(r[5], 1@z) →* r[2])∧(n[5] →* n[2])∧(j[5] →* j[2])∧(l[5] →* l[2])∧(i[5] →* i[2]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(6) -> (19), if ((r[6] →* r[19])∧(n[6] →* n[19])∧(j[6] →* j[19])∧(l[6] →* l[19])∧(i[6] →* i[19]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(6) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(7) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(8) (1 + r[15] ≥ 0∧j[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(9) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(10) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(14) (n[1]=n[12]∧i[1]=i[12]∧r[1]=r[12]∧&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1]))=TRUE∧j[12]=j[19]∧l[1]=l[12]∧j[1]=j[12]∧n[12]=n[19]∧r[12]=r[19]∧l[12]=l[19]∧i[12]=i[19] ⇒ COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥NonInfC∧COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥EVAL_4(i[12], j[12], l[12], r[12], n[12])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(15) (>=@z(r[1], j[1])=TRUE∧>=@z(-@z(r[1], 1@z), j[1])=TRUE ⇒ COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥NonInfC∧COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥EVAL_4(i[1], j[1], l[1], r[1], n[1])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(16) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (-1 + r[1] + (-1)j[1] ≥ 0∧r[1] + (-1)j[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(19) (-1 + r[1] + (-1)j[1] ≥ 0∧r[1] + (-1)j[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
(20) (-1 + j[1] ≥ 0∧j[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
(21) (j[1] ≥ 0∧1 + j[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
(22) (j[1] ≥ 0∧1 + j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
(23) (j[1] ≥ 0∧1 + j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
(24) (n[1]=n[12]∧i[12]=i[18]∧i[1]=i[12]∧r[1]=r[12]∧&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1]))=TRUE∧l[1]=l[12]∧j[12]=j[18]∧j[1]=j[12]∧n[12]=n[18]∧l[12]=l[18]∧r[12]=r[18] ⇒ COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥NonInfC∧COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥EVAL_4(i[12], j[12], l[12], r[12], n[12])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(25) (>=@z(r[1], j[1])=TRUE∧>=@z(-@z(r[1], 1@z), j[1])=TRUE ⇒ COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥NonInfC∧COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥EVAL_4(i[1], j[1], l[1], r[1], n[1])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(26) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0)
(29) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(30) (1 + j[1] ≥ 0∧j[1] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(31) (1 + j[1] ≥ 0∧j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(32) (1 + j[1] ≥ 0∧j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(33) (EVAL_3(i[1], j[1], l[1], r[1], n[1])≥NonInfC∧EVAL_3(i[1], j[1], l[1], r[1], n[1])≥COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥))
(34) ((UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(35) ((UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(36) (0 ≥ 0∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0)
(37) (0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(38) (l[14]=l[6]∧i[14]=i[6]∧j[14]=j[6]∧r[14]=r[6]∧j[6]=j[19]∧&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z)))=TRUE∧n[14]=n[6]∧l[6]=l[19]∧i[6]=i[19]∧r[6]=r[19]∧n[6]=n[19] ⇒ COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥NonInfC∧COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥EVAL_4(i[6], j[6], l[6], r[6], n[6])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(39) (>=@z(r[14], j[14])=TRUE∧>@z(j[14], -@z(r[14], 1@z))=TRUE ⇒ COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥NonInfC∧COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥EVAL_4(i[14], j[14], l[14], r[14], n[14])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(40) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (j[14] + (-1)r[14] ≥ 0∧r[14] + (-1)j[14] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(43) (j[14] + (-1)r[14] ≥ 0∧r[14] + (-1)j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0)
(44) ((-1)r[14] ≥ 0∧r[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0)
(45) (0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0)
(46) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0)
(47) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0)
(48) (i[6]=i[18]∧l[6]=l[18]∧n[6]=n[18]∧r[6]=r[18]∧l[14]=l[6]∧i[14]=i[6]∧j[6]=j[18]∧j[14]=j[6]∧r[14]=r[6]∧&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z)))=TRUE∧n[14]=n[6] ⇒ COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥NonInfC∧COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥EVAL_4(i[6], j[6], l[6], r[6], n[6])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(49) (>=@z(r[14], j[14])=TRUE∧>@z(j[14], -@z(r[14], 1@z))=TRUE ⇒ COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥NonInfC∧COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥EVAL_4(i[14], j[14], l[14], r[14], n[14])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(50) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(51) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(52) (j[14] + (-1)r[14] ≥ 0∧r[14] + (-1)j[14] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(53) (j[14] + (-1)r[14] ≥ 0∧r[14] + (-1)j[14] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(54) ((-1)r[14] ≥ 0∧r[14] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(55) (0 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(56) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(57) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(58) (EVAL_3(i[14], j[14], l[14], r[14], n[14])≥NonInfC∧EVAL_3(i[14], j[14], l[14], r[14], n[14])≥COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥))
(59) ((UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 ≥ 0)
(60) ((UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) (0 ≥ 0∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0)
(62) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(63) (l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧n[3]=n[13]∧r[3]=r[13]∧j[3]=j[13] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(64) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(65) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(66) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(67) (r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0)
(68) (r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(69) (r[3] ≥ 0∧(-1)r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(70) (0 ≥ 0∧0 ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(71) (0 ≥ 0∧0 ≥ 0∧j[3] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(72) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(73) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(74) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(75) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(76) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(77) (j[10]=j[2]∧r[10]=r[2]∧i[10]=i[2]∧l[19]=l[10]∧i[19]=i[10]∧&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z))=TRUE∧n[10]=n[2]∧r[19]=r[10]∧j[19]=j[10]∧n[19]=n[10]∧-@z(l[10], 1@z)=l[2] ⇒ COND_EVAL_4(TRUE, i[10], j[10], l[10], r[10], n[10])≥NonInfC∧COND_EVAL_4(TRUE, i[10], j[10], l[10], r[10], n[10])≥EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥))
(78) (>=@z(r[19], 2@z)=TRUE∧>=@z(l[19], 2@z)=TRUE∧>=@z(l[19], 1@z)=TRUE ⇒ COND_EVAL_4(TRUE, i[19], j[19], l[19], r[19], n[19])≥NonInfC∧COND_EVAL_4(TRUE, i[19], j[19], l[19], r[19], n[19])≥EVAL_2(i[19], j[19], -@z(l[19], 1@z), r[19], n[19])∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥))
(79) (-2 + r[19] ≥ 0∧-2 + l[19] ≥ 0∧-1 + l[19] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 ≥ 0∧0 ≥ 0)
(80) (-2 + r[19] ≥ 0∧-2 + l[19] ≥ 0∧-1 + l[19] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 ≥ 0∧0 ≥ 0)
(81) (-1 + l[19] ≥ 0∧-2 + l[19] ≥ 0∧-2 + r[19] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥))
(82) (-1 + l[19] ≥ 0∧-2 + l[19] ≥ 0∧-2 + r[19] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(83) (-1 + l[19] ≥ 0∧-2 + l[19] ≥ 0∧r[19] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(84) (1 + l[19] ≥ 0∧l[19] ≥ 0∧r[19] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(85) (EVAL_4(i[19], j[19], l[19], r[19], n[19])≥NonInfC∧EVAL_4(i[19], j[19], l[19], r[19], n[19])≥COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])∧(UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥))
(86) ((UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥)∧0 ≥ 0∧0 ≥ 0)
(87) ((UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥)∧0 ≥ 0∧0 ≥ 0)
(88) ((UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥)∧0 ≥ 0∧0 ≥ 0)
(89) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(90) (EVAL_2(i[2], j[2], l[2], r[2], n[2])≥NonInfC∧EVAL_2(i[2], j[2], l[2], r[2], n[2])≥COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥))
(91) ((UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(92) ((UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(93) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥))
(94) (0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(95) (l[18]=l[5]∧-@z(r[5], 1@z)=r[2]∧&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z))=TRUE∧i[5]=i[2]∧i[18]=i[5]∧j[5]=j[2]∧j[18]=j[5]∧n[5]=n[2]∧n[18]=n[5]∧l[5]=l[2]∧r[18]=r[5] ⇒ COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5])≥NonInfC∧COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5])≥EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥))
(96) (>=@z(r[18], 2@z)=TRUE∧>@z(2@z, l[18])=TRUE∧>=@z(l[18], 1@z)=TRUE ⇒ COND_EVAL_41(TRUE, i[18], j[18], l[18], r[18], n[18])≥NonInfC∧COND_EVAL_41(TRUE, i[18], j[18], l[18], r[18], n[18])≥EVAL_2(i[18], j[18], l[18], -@z(r[18], 1@z), n[18])∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥))
(97) (-2 + r[18] ≥ 0∧1 + (-1)l[18] ≥ 0∧-1 + l[18] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧-1 + (-1)Bound + l[18] ≥ 0∧0 ≥ 0)
(98) (-2 + r[18] ≥ 0∧1 + (-1)l[18] ≥ 0∧-1 + l[18] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧-1 + (-1)Bound + l[18] ≥ 0∧0 ≥ 0)
(99) (1 + (-1)l[18] ≥ 0∧-2 + r[18] ≥ 0∧-1 + l[18] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + l[18] ≥ 0)
(100) (1 + (-1)l[18] ≥ 0∧-2 + r[18] ≥ 0∧-1 + l[18] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 = 0∧-1 + (-1)Bound + l[18] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(101) ((-1)l[18] ≥ 0∧-2 + r[18] ≥ 0∧l[18] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 = 0∧(-1)Bound + l[18] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(102) (0 ≥ 0∧-2 + r[18] ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(103) (0 ≥ 0∧r[18] ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(104) (EVAL_4(i[18], j[18], l[18], r[18], n[18])≥NonInfC∧EVAL_4(i[18], j[18], l[18], r[18], n[18])≥COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])∧(UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥))
(105) ((UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 ≥ 0∧0 ≥ 0)
(106) ((UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 ≥ 0∧0 ≥ 0)
(107) (0 ≥ 0∧(UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 ≥ 0)
(108) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 = 0∧0 = 0)
(109) (j[8]=j[17]∧i[17]=i[18]∧n[8]=n[17]∧&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8]))=TRUE∧l[17]=l[18]∧r[8]=r[17]∧i[8]=i[17]∧n[17]=n[18]∧+@z(j[17], 1@z)=j[18]∧l[8]=l[17]∧r[17]=r[18] ⇒ COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥NonInfC∧COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(110) (>=@z(r[8], j[8])=TRUE∧>=@z(-@z(r[8], 1@z), j[8])=TRUE ⇒ COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥NonInfC∧COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥EVAL_4(i[8], +@z(j[8], 1@z), l[8], r[8], n[8])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(111) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(112) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(113) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0)
(114) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(115) (r[8] ≥ 0∧1 + r[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(116) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(117) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(118) (r[17]=r[19]∧j[8]=j[17]∧n[8]=n[17]∧+@z(j[17], 1@z)=j[19]∧&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8]))=TRUE∧r[8]=r[17]∧n[17]=n[19]∧i[8]=i[17]∧l[17]=l[19]∧i[17]=i[19]∧l[8]=l[17] ⇒ COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥NonInfC∧COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(119) (>=@z(r[8], j[8])=TRUE∧>=@z(-@z(r[8], 1@z), j[8])=TRUE ⇒ COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥NonInfC∧COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥EVAL_4(i[8], +@z(j[8], 1@z), l[8], r[8], n[8])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(120) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(121) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(122) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(123) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(124) (r[8] ≥ 0∧1 + r[8] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(125) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(126) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(127) (EVAL_3(i[8], j[8], l[8], r[8], n[8])≥NonInfC∧EVAL_3(i[8], j[8], l[8], r[8], n[8])≥COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])∧(UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥))
(128) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(129) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(130) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(131) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(132) (j[9]=j[21]∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(133) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(134) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0)
(135) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0)
(136) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(137) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
(138) (-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
(139) (-1 + r[9] ≥ 0∧r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
(140) (r[9] ≥ 0∧1 + r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
(141) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(142) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(143) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(144) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(145) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(146) (i[2]=i[0]∧r[2]=r[0]∧n[2]=n[0]∧l[2]=l[0]∧>=@z(r[2], 2@z)=TRUE∧j[2]=j[0] ⇒ COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0])≥NonInfC∧COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0])≥EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(147) (>=@z(r[2], 2@z)=TRUE ⇒ COND_EVAL_2(TRUE, i[2], j[2], l[2], r[2], n[2])≥NonInfC∧COND_EVAL_2(TRUE, i[2], j[2], l[2], r[2], n[2])≥EVAL_3(l[2], *@z(2@z, l[2]), l[2], r[2], n[2])∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(148) (-2 + r[2] ≥ 0 ⇒ (UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(149) (-2 + r[2] ≥ 0 ⇒ (UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(150) (-2 + r[2] ≥ 0 ⇒ (UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(151) (-2 + r[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(152) (r[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = x4 + x1
POL(EVAL_4(x1, x2, x3, x4, x5)) = -1 + x3
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x3
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(COND_EVAL_34(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = x4 + x1
POL(COND_EVAL_2(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(*@z(x1, x2)) = x1·x2
POL(EVAL_2(x1, x2, x3, x4, x5)) = -1 + x3
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(COND_EVAL_33(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(COND_EVAL_31(x1, x2, x3, x4, x5, x6)) = x4 + x1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL_41(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL_4(x1, x2, x3, x4, x5, x6)) = -1 + x4 + x1
POL(1@z) = 1
POL(undefined) = -1
EVAL_4(i[19], j[19], l[19], r[19], n[19]) → COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])
COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5]) → EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12]) → EVAL_4(i[12], j[12], l[12], r[12], n[12])
EVAL_3(i[1], j[1], l[1], r[1], n[1]) → COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])
COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6]) → EVAL_4(i[6], j[6], l[6], r[6], n[6])
EVAL_3(i[14], j[14], l[14], r[14], n[14]) → COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
COND_EVAL_4(TRUE, i[10], j[10], l[10], r[10], n[10]) → EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])
EVAL_2(i[2], j[2], l[2], r[2], n[2]) → COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])
COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5]) → EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])
EVAL_4(i[18], j[18], l[18], r[18], n[18]) → COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])
COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17]) → EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])
EVAL_3(i[8], j[8], l[8], r[8], n[8]) → COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0]) → EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])
*@z1 ↔
&&(FALSE, FALSE)1 → FALSE1
-@z1 ↔
+@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(12) -> (19), if ((r[12] →* r[19])∧(n[12] →* n[19])∧(j[12] →* j[19])∧(l[12] →* l[19])∧(i[12] →* i[19]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(19) -> (10), if ((l[19] →* l[10])∧(r[19] →* r[10])∧(i[19] →* i[10])∧(j[19] →* j[10])∧(n[19] →* n[10])∧(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)) →* TRUE))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(10) -> (2), if ((r[10] →* r[2])∧(n[10] →* n[2])∧(j[10] →* j[2])∧(-@z(l[10], 1@z) →* l[2])∧(i[10] →* i[2]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(17) -> (19), if ((r[17] →* r[19])∧(n[17] →* n[19])∧(+@z(j[17], 1@z) →* j[19])∧(l[17] →* l[19])∧(i[17] →* i[19]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(6) -> (19), if ((r[6] →* r[19])∧(n[6] →* n[19])∧(j[6] →* j[19])∧(l[6] →* l[19])∧(i[6] →* i[19]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(12) -> (19), if ((r[12] →* r[19])∧(n[12] →* n[19])∧(j[12] →* j[19])∧(l[12] →* l[19])∧(i[12] →* i[19]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(19) -> (10), if ((l[19] →* l[10])∧(r[19] →* r[10])∧(i[19] →* i[10])∧(j[19] →* j[10])∧(n[19] →* n[10])∧(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)) →* TRUE))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(10) -> (2), if ((r[10] →* r[2])∧(n[10] →* n[2])∧(j[10] →* j[2])∧(-@z(l[10], 1@z) →* l[2])∧(i[10] →* i[2]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(17) -> (19), if ((r[17] →* r[19])∧(n[17] →* n[19])∧(+@z(j[17], 1@z) →* j[19])∧(l[17] →* l[19])∧(i[17] →* i[19]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(6) -> (19), if ((r[6] →* r[19])∧(n[6] →* n[19])∧(j[6] →* j[19])∧(l[6] →* l[19])∧(i[6] →* i[19]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(6) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(7) (-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(8) (-1 + r[15] ≥ 0∧r[15] ≥ 0∧j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(9) (r[15] ≥ 0∧1 + r[15] ≥ 0∧j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(10) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(11) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0)
(14) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(15) (n[1]=n[12]∧i[1]=i[12]∧r[1]=r[12]∧&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1]))=TRUE∧j[12]=j[19]∧l[1]=l[12]∧j[1]=j[12]∧n[12]=n[19]∧r[12]=r[19]∧l[12]=l[19]∧i[12]=i[19] ⇒ COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥NonInfC∧COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥EVAL_4(i[12], j[12], l[12], r[12], n[12])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(16) (>=@z(r[1], j[1])=TRUE∧>=@z(-@z(r[1], 1@z), j[1])=TRUE ⇒ COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥NonInfC∧COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥EVAL_4(i[1], j[1], l[1], r[1], n[1])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(17) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(20) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(21) (1 + j[1] ≥ 0∧j[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(22) (1 + j[1] ≥ 0∧j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(23) (1 + j[1] ≥ 0∧j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(24) (EVAL_3(i[1], j[1], l[1], r[1], n[1])≥NonInfC∧EVAL_3(i[1], j[1], l[1], r[1], n[1])≥COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥))
(25) ((UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) ((UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) ((UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) (0 = 0∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(29) (l[14]=l[6]∧i[14]=i[6]∧j[14]=j[6]∧r[14]=r[6]∧j[6]=j[19]∧&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z)))=TRUE∧n[14]=n[6]∧l[6]=l[19]∧i[6]=i[19]∧r[6]=r[19]∧n[6]=n[19] ⇒ COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥NonInfC∧COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥EVAL_4(i[6], j[6], l[6], r[6], n[6])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(30) (>=@z(r[14], j[14])=TRUE∧>@z(j[14], -@z(r[14], 1@z))=TRUE ⇒ COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥NonInfC∧COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥EVAL_4(i[14], j[14], l[14], r[14], n[14])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(31) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (j[14] + (-1)r[14] ≥ 0∧r[14] + (-1)j[14] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(34) (j[14] + (-1)r[14] ≥ 0∧r[14] + (-1)j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(35) (r[14] ≥ 0∧(-1)r[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(36) (0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(37) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(38) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(39) (EVAL_3(i[14], j[14], l[14], r[14], n[14])≥NonInfC∧EVAL_3(i[14], j[14], l[14], r[14], n[14])≥COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥))
(40) ((UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) ((UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) ((UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 ≥ 0)
(43) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(44) (l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧n[3]=n[13]∧r[3]=r[13]∧j[3]=j[13] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(45) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(46) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(47) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(48) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(49) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(50) (j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0∧r[3] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(51) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(52) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(53) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(54) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(55) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(56) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(57) (0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(58) (EVAL_2(i[2], j[2], l[2], r[2], n[2])≥NonInfC∧EVAL_2(i[2], j[2], l[2], r[2], n[2])≥COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥))
(59) ((UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(60) ((UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) (0 ≥ 0∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 ≥ 0)
(62) (0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(63) (j[10]=j[2]∧r[10]=r[2]∧i[10]=i[2]∧l[19]=l[10]∧i[19]=i[10]∧&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z))=TRUE∧n[10]=n[2]∧r[19]=r[10]∧j[19]=j[10]∧n[19]=n[10]∧-@z(l[10], 1@z)=l[2] ⇒ COND_EVAL_4(TRUE, i[10], j[10], l[10], r[10], n[10])≥NonInfC∧COND_EVAL_4(TRUE, i[10], j[10], l[10], r[10], n[10])≥EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥))
(64) (>=@z(r[19], 2@z)=TRUE∧>=@z(l[19], 2@z)=TRUE∧>=@z(l[19], 1@z)=TRUE ⇒ COND_EVAL_4(TRUE, i[19], j[19], l[19], r[19], n[19])≥NonInfC∧COND_EVAL_4(TRUE, i[19], j[19], l[19], r[19], n[19])≥EVAL_2(i[19], j[19], -@z(l[19], 1@z), r[19], n[19])∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥))
(65) (-2 + r[19] ≥ 0∧-2 + l[19] ≥ 0∧-1 + l[19] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧-1 + (-1)Bound + l[19] ≥ 0∧0 ≥ 0)
(66) (-2 + r[19] ≥ 0∧-2 + l[19] ≥ 0∧-1 + l[19] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧-1 + (-1)Bound + l[19] ≥ 0∧0 ≥ 0)
(67) (-2 + r[19] ≥ 0∧-1 + l[19] ≥ 0∧-2 + l[19] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧-1 + (-1)Bound + l[19] ≥ 0)
(68) (-2 + r[19] ≥ 0∧-1 + l[19] ≥ 0∧-2 + l[19] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 = 0∧-1 + (-1)Bound + l[19] ≥ 0∧0 ≥ 0∧0 = 0)
(69) (r[19] ≥ 0∧-1 + l[19] ≥ 0∧-2 + l[19] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 = 0∧-1 + (-1)Bound + l[19] ≥ 0∧0 ≥ 0∧0 = 0)
(70) (r[19] ≥ 0∧l[19] ≥ 0∧-1 + l[19] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 = 0∧(-1)Bound + l[19] ≥ 0∧0 ≥ 0∧0 = 0)
(71) (r[19] ≥ 0∧1 + l[19] ≥ 0∧l[19] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])), ≥)∧0 = 0∧1 + (-1)Bound + l[19] ≥ 0∧0 ≥ 0∧0 = 0)
(72) (EVAL_4(i[19], j[19], l[19], r[19], n[19])≥NonInfC∧EVAL_4(i[19], j[19], l[19], r[19], n[19])≥COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])∧(UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥))
(73) ((UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥)∧0 ≥ 0∧0 ≥ 0)
(74) ((UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥)∧0 ≥ 0∧0 ≥ 0)
(75) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥))
(76) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])), ≥)∧0 = 0∧0 = 0)
(77) (r[17]=r[19]∧j[8]=j[17]∧n[8]=n[17]∧+@z(j[17], 1@z)=j[19]∧&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8]))=TRUE∧r[8]=r[17]∧n[17]=n[19]∧i[8]=i[17]∧l[17]=l[19]∧i[17]=i[19]∧l[8]=l[17] ⇒ COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥NonInfC∧COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(78) (>=@z(r[8], j[8])=TRUE∧>=@z(-@z(r[8], 1@z), j[8])=TRUE ⇒ COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥NonInfC∧COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥EVAL_4(i[8], +@z(j[8], 1@z), l[8], r[8], n[8])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(79) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(80) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(81) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(82) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(83) (-1 + r[8] ≥ 0∧r[8] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(84) (r[8] ≥ 0∧1 + r[8] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(85) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(86) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 = 0)
(87) (EVAL_3(i[8], j[8], l[8], r[8], n[8])≥NonInfC∧EVAL_3(i[8], j[8], l[8], r[8], n[8])≥COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])∧(UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥))
(88) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(89) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(90) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥))
(91) (0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(92) (j[9]=j[21]∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(93) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(94) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0)
(95) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0)
(96) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0)
(97) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(98) (-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(99) (-1 + r[9] ≥ 0∧r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(100) (r[9] ≥ 0∧1 + r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(101) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(102) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(103) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(104) (0 ≥ 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0)
(105) (0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0)
(106) (i[2]=i[0]∧r[2]=r[0]∧n[2]=n[0]∧l[2]=l[0]∧>=@z(r[2], 2@z)=TRUE∧j[2]=j[0] ⇒ COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0])≥NonInfC∧COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0])≥EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(107) (>=@z(r[2], 2@z)=TRUE ⇒ COND_EVAL_2(TRUE, i[2], j[2], l[2], r[2], n[2])≥NonInfC∧COND_EVAL_2(TRUE, i[2], j[2], l[2], r[2], n[2])≥EVAL_3(l[2], *@z(2@z, l[2]), l[2], r[2], n[2])∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(108) (-2 + r[2] ≥ 0 ⇒ (UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(109) (-2 + r[2] ≥ 0 ⇒ (UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(110) (-2 + r[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(111) (-2 + r[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(112) (r[2] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(EVAL_4(x1, x2, x3, x4, x5)) = -1 + x3
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x3
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(COND_EVAL_34(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(COND_EVAL_2(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(*@z(x1, x2)) = x1·x2
POL(EVAL_2(x1, x2, x3, x4, x5)) = -1 + x3
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(COND_EVAL_33(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(COND_EVAL_31(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = 0
POL(+@z(x1, x2)) = x1 + x2
POL(COND_EVAL_4(x1, x2, x3, x4, x5, x6)) = -1 + x4
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_4(TRUE, i[10], j[10], l[10], r[10], n[10]) → EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])
COND_EVAL_4(TRUE, i[10], j[10], l[10], r[10], n[10]) → EVAL_2(i[10], j[10], -@z(l[10], 1@z), r[10], n[10])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12]) → EVAL_4(i[12], j[12], l[12], r[12], n[12])
EVAL_3(i[1], j[1], l[1], r[1], n[1]) → COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])
COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6]) → EVAL_4(i[6], j[6], l[6], r[6], n[6])
EVAL_3(i[14], j[14], l[14], r[14], n[14]) → COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
EVAL_2(i[2], j[2], l[2], r[2], n[2]) → COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])
EVAL_4(i[19], j[19], l[19], r[19], n[19]) → COND_EVAL_4(&&(&&(>=@z(l[19], 2@z), >=@z(l[19], 1@z)), >=@z(r[19], 2@z)), i[19], j[19], l[19], r[19], n[19])
COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17]) → EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])
EVAL_3(i[8], j[8], l[8], r[8], n[8]) → COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0]) → EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
+@z1 ↔
&&(TRUE, TRUE)1 → TRUE1
&&(FALSE, TRUE)1 → FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(12) -> (19), if ((r[12] →* r[19])∧(n[12] →* n[19])∧(j[12] →* j[19])∧(l[12] →* l[19])∧(i[12] →* i[19]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(17) -> (19), if ((r[17] →* r[19])∧(n[17] →* n[19])∧(+@z(j[17], 1@z) →* j[19])∧(l[17] →* l[19])∧(i[17] →* i[19]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(6) -> (19), if ((r[6] →* r[19])∧(n[6] →* n[19])∧(j[6] →* j[19])∧(l[6] →* l[19])∧(i[6] →* i[19]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (n[16]=n[9]∧+@z(j[16], 1@z)=i[9]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[9]∧r[16]=r[9]∧+@z(*@z(2@z, j[16]), 2@z)=j[9]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(5) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(6) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧1 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0)
(7) (-2 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0)
(8) (-1 + r[15] ≥ 0∧j[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0)
(9) (r[15] ≥ 0∧j[15] ≥ 0∧1 + r[15] ≥ 0 ⇒ 0 = 0∧2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧(-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0)
(10) (n[16]=n[15]1∧r[15]=r[16]∧l[15]=l[16]∧+@z(j[16], 1@z)=i[15]1∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[15]1∧i[15]=i[16]∧+@z(*@z(2@z, j[16]), 2@z)=j[15]1∧r[16]=r[15]1 ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(11) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(12) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(13) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(14) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(15) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧1 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(16) (j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(17) (j[15] ≥ 0∧r[15] ≥ 0∧1 + r[15] ≥ 0 ⇒ 0 = 0∧2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧(-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(18) (+@z(*@z(2@z, j[16]), 2@z)=j[3]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧l[16]=l[3]∧j[15]=j[16]∧n[16]=n[3]∧r[16]=r[3]∧+@z(j[16], 1@z)=i[3]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(19) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(20) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(21) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(22) (r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ 1 + j[15] ≥ 0∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(23) (r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0∧0 = 0∧0 = 0)
(24) (-1 + r[15] + (-1)j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0)
(25) (r[15] ≥ 0∧-1 + r[15] ≥ 0∧j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[15] ≥ 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0)
(26) (1 + r[15] ≥ 0∧r[15] ≥ 0∧j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[15] ≥ 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0)
(27) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(28) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(31) (0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(32) (r[13]=r[3]1∧*@z(2@z, j[13])=j[3]1∧l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧j[13]=i[3]1∧n[3]=n[13]∧r[3]=r[13]∧n[13]=n[3]1∧j[3]=j[13]∧l[13]=l[3]1 ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(33) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(34) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(35) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(36) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(37) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(38) (j[3] + -1 ≥ 0∧r[3] ≥ 0∧(-1)r[3] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(39) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(40) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(41) (l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧*@z(2@z, j[13])=j[15]∧n[3]=n[13]∧r[3]=r[13]∧r[13]=r[15]∧j[3]=j[13]∧l[13]=l[15]∧j[13]=i[15]∧n[13]=n[15] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(42) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(43) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(44) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(45) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 ≥ 0)
(46) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(47) (j[3] + -1 ≥ 0∧r[3] ≥ 0∧(-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(48) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(49) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(50) (l[13]=l[9]∧l[3]=l[13]∧i[3]=i[13]∧n[13]=n[9]∧r[13]=r[9]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧n[3]=n[13]∧r[3]=r[13]∧j[13]=i[9]∧j[3]=j[13]∧*@z(2@z, j[13])=j[9] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(51) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(52) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(53) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(54) (r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧j[3] ≥ 0)
(55) (r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0)
(56) (r[3] ≥ 0∧j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0)
(57) (0 ≥ 0∧j[3] + -1 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0)
(58) (0 ≥ 0∧j[3] ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧1 + j[3] ≥ 0∧0 = 0∧0 = 0)
(59) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(60) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(62) (0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0)
(63) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0)
(64) (j[9]=j[21]∧n[21]=n[15]∧l[21]=l[15]∧n[9]=n[21]∧r[9]=r[21]∧r[21]=r[15]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[15]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[15] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(65) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(66) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(67) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(68) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(69) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ j[9] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(70) (j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(71) (j[9] ≥ 0∧-1 + r[9] ≥ 0∧r[9] ≥ 0 ⇒ 1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(72) (j[9] ≥ 0∧r[9] ≥ 0∧1 + r[9] ≥ 0 ⇒ 1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(73) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(74) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(75) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(76) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(77) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧j[9] ≥ 0∧0 ≥ 0)
(78) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ j[9] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(79) (j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(80) (j[9] ≥ 0∧1 + r[9] ≥ 0∧r[9] ≥ 0 ⇒ 1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(81) (j[9]=j[21]∧l[21]=l[3]∧r[21]=r[3]∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[3]∧n[21]=n[3]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[3] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(82) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(83) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(84) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(85) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0)
(86) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(87) (j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(88) (j[9] ≥ 0∧r[9] ≥ 0∧1 + r[9] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(89) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(90) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(91) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(92) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(93) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x4 + (-1)x2
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (r[13]=r[3]1∧*@z(2@z, j[13])=j[3]1∧l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧j[13]=i[3]1∧n[3]=n[13]∧r[3]=r[13]∧n[13]=n[3]1∧j[3]=j[13]∧l[13]=l[3]1 ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(2) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(3) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(4) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(5) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0)
(6) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(7) (j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0∧r[3] ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + (-1)Bound + r[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(8) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + (-1)Bound ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(9) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + (-1)Bound ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(10) (l[13]=l[9]∧l[3]=l[13]∧i[3]=i[13]∧n[13]=n[9]∧r[13]=r[9]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧n[3]=n[13]∧r[3]=r[13]∧j[13]=i[9]∧j[3]=j[13]∧*@z(2@z, j[13])=j[9] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(11) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(12) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(13) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(14) (r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0)
(15) (r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧0 = 0∧0 = 0)
(16) (r[3] ≥ 0∧j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[3] ≥ 0∧0 = 0∧0 = 0)
(17) (0 ≥ 0∧j[3] + -1 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound ≥ 0∧0 = 0∧0 = 0)
(18) (0 ≥ 0∧j[3] ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound ≥ 0∧0 = 0∧0 = 0)
(19) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(20) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(23) (0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(24) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(25) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(26) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(27) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(28) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ -1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0)
(29) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧-1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(30) (-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(31) (1 + r[9] ≥ 0∧j[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 ≥ 0∧0 = 0∧0 = 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(32) (j[9]=j[21]∧l[21]=l[3]∧r[21]=r[3]∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[3]∧n[21]=n[3]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[3] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(33) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(34) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(35) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(36) (-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ -1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0)
(37) (-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(38) (-2 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(39) (-1 + r[9] ≥ 0∧j[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(40) (r[9] ≥ 0∧j[9] ≥ 0∧1 + r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(41) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(42) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(43) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(44) (0 ≥ 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0)
(45) (0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 → TRUE1
&&(FALSE, TRUE)1 → FALSE1
&&(TRUE, FALSE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (r[13]=r[3]1∧*@z(2@z, j[13])=j[3]1∧l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧j[13]=i[3]1∧n[3]=n[13]∧r[3]=r[13]∧n[13]=n[3]1∧j[3]=j[13]∧l[13]=l[3]1 ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(2) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(3) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(4) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(5) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ -1 + j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0)
(6) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(7) (j[3] + -1 ≥ 0∧r[3] ≥ 0∧(-1)r[3] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[3] ≥ 0∧-1 + j[3] ≥ 0)
(8) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound ≥ 0∧-1 + j[3] ≥ 0)
(9) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound ≥ 0∧j[3] ≥ 0)
(10) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(11) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(14) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x4 + (-1)x2
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(2@z) = 2
POL(FALSE) = 2
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
*@z1 ↔
FALSE1 → &&(FALSE, FALSE)1
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(2) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(3) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(4) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(5) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (-1)Bound + r[9] + (-1)j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + j[9] ≥ 0)
(6) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧0 = 0∧0 = 0)
(7) (-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧-1 + (-1)Bound + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧0 = 0∧0 = 0)
(8) (r[9] ≥ 0∧j[9] ≥ 0∧-1 + r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧(-1)Bound + r[9] ≥ 0∧j[9] ≥ 0∧0 = 0∧0 = 0)
(9) (1 + r[9] ≥ 0∧j[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧1 + (-1)Bound + r[9] ≥ 0∧j[9] ≥ 0∧0 = 0∧0 = 0)
(10) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(11) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (0 ≥ 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(10) -> (2), if ((r[10] →* r[2])∧(n[10] →* n[2])∧(j[10] →* j[2])∧(-@z(l[10], 1@z) →* l[2])∧(i[10] →* i[2]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(18) -> (5), if ((l[18] →* l[5])∧(r[18] →* r[5])∧(i[18] →* i[5])∧(j[18] →* j[5])∧(n[18] →* n[5])∧(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)) →* TRUE))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(5) -> (2), if ((-@z(r[5], 1@z) →* r[2])∧(n[5] →* n[2])∧(j[5] →* j[2])∧(l[5] →* l[2])∧(i[5] →* i[2]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(18) -> (5), if ((l[18] →* l[5])∧(r[18] →* r[5])∧(i[18] →* i[5])∧(j[18] →* j[5])∧(n[18] →* n[5])∧(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)) →* TRUE))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(5) -> (2), if ((-@z(r[5], 1@z) →* r[2])∧(n[5] →* n[2])∧(j[5] →* j[2])∧(l[5] →* l[2])∧(i[5] →* i[2]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(5) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 ≥ 0)
(6) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(7) (-2 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(8) (-1 + r[15] ≥ 0∧j[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(9) (r[15] ≥ 0∧j[15] ≥ 0∧1 + r[15] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(10) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(11) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0)
(14) (0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(15) (n[1]=n[12]∧i[12]=i[18]∧i[1]=i[12]∧r[1]=r[12]∧&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1]))=TRUE∧l[1]=l[12]∧j[12]=j[18]∧j[1]=j[12]∧n[12]=n[18]∧l[12]=l[18]∧r[12]=r[18] ⇒ COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥NonInfC∧COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12])≥EVAL_4(i[12], j[12], l[12], r[12], n[12])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(16) (>=@z(r[1], j[1])=TRUE∧>=@z(-@z(r[1], 1@z), j[1])=TRUE ⇒ COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥NonInfC∧COND_EVAL_31(TRUE, i[1], j[1], l[1], r[1], n[1])≥EVAL_4(i[1], j[1], l[1], r[1], n[1])∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥))
(17) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(18) (r[1] + (-1)j[1] ≥ 0∧-1 + r[1] + (-1)j[1] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (-1 + r[1] + (-1)j[1] ≥ 0∧r[1] + (-1)j[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 ≥ 0)
(20) (-1 + r[1] + (-1)j[1] ≥ 0∧r[1] + (-1)j[1] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(21) (j[1] ≥ 0∧1 + j[1] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(22) (j[1] ≥ 0∧1 + j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(23) (j[1] ≥ 0∧1 + j[1] ≥ 0∧r[1] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[12], j[12], l[12], r[12], n[12])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(24) (EVAL_3(i[1], j[1], l[1], r[1], n[1])≥NonInfC∧EVAL_3(i[1], j[1], l[1], r[1], n[1])≥COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥))
(25) ((UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) ((UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (0 ≥ 0∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 ≥ 0)
(28) (0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(29) (i[6]=i[18]∧l[6]=l[18]∧n[6]=n[18]∧r[6]=r[18]∧l[14]=l[6]∧i[14]=i[6]∧j[6]=j[18]∧j[14]=j[6]∧r[14]=r[6]∧&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z)))=TRUE∧n[14]=n[6] ⇒ COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥NonInfC∧COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6])≥EVAL_4(i[6], j[6], l[6], r[6], n[6])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(30) (>=@z(r[14], j[14])=TRUE∧>@z(j[14], -@z(r[14], 1@z))=TRUE ⇒ COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥NonInfC∧COND_EVAL_34(TRUE, i[14], j[14], l[14], r[14], n[14])≥EVAL_4(i[14], j[14], l[14], r[14], n[14])∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥))
(31) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(32) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0∧0 ≥ 0)
(33) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 ≥ 0)
(34) (r[14] + (-1)j[14] ≥ 0∧j[14] + (-1)r[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(35) (r[14] ≥ 0∧(-1)r[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(36) (0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(37) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(38) (0 ≥ 0∧0 ≥ 0∧j[14] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[6], j[6], l[6], r[6], n[6])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(39) (EVAL_3(i[14], j[14], l[14], r[14], n[14])≥NonInfC∧EVAL_3(i[14], j[14], l[14], r[14], n[14])≥COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥))
(40) ((UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) ((UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥))
(43) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])), ≥)∧0 ≥ 0∧0 = 0)
(44) (l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧n[3]=n[13]∧r[3]=r[13]∧j[3]=j[13] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(45) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(46) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(47) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(48) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧0 ≥ 0)
(49) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(50) (j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0∧r[3] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(51) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(52) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(53) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(54) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(55) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(56) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(57) (0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(58) (EVAL_2(i[2], j[2], l[2], r[2], n[2])≥NonInfC∧EVAL_2(i[2], j[2], l[2], r[2], n[2])≥COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥))
(59) ((UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(60) ((UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥))
(62) (0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(63) (l[18]=l[5]∧-@z(r[5], 1@z)=r[2]∧&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z))=TRUE∧i[5]=i[2]∧i[18]=i[5]∧j[5]=j[2]∧j[18]=j[5]∧n[5]=n[2]∧n[18]=n[5]∧l[5]=l[2]∧r[18]=r[5] ⇒ COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5])≥NonInfC∧COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5])≥EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥))
(64) (>=@z(r[18], 2@z)=TRUE∧>@z(2@z, l[18])=TRUE∧>=@z(l[18], 1@z)=TRUE ⇒ COND_EVAL_41(TRUE, i[18], j[18], l[18], r[18], n[18])≥NonInfC∧COND_EVAL_41(TRUE, i[18], j[18], l[18], r[18], n[18])≥EVAL_2(i[18], j[18], l[18], -@z(r[18], 1@z), n[18])∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥))
(65) (-2 + r[18] ≥ 0∧1 + (-1)l[18] ≥ 0∧-1 + l[18] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧(-1)Bound + r[18] + (-1)l[18] ≥ 0∧0 ≥ 0)
(66) (-2 + r[18] ≥ 0∧1 + (-1)l[18] ≥ 0∧-1 + l[18] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧(-1)Bound + r[18] + (-1)l[18] ≥ 0∧0 ≥ 0)
(67) (1 + (-1)l[18] ≥ 0∧-1 + l[18] ≥ 0∧-2 + r[18] ≥ 0 ⇒ (UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧(-1)Bound + r[18] + (-1)l[18] ≥ 0∧0 ≥ 0)
(68) (1 + (-1)l[18] ≥ 0∧-1 + l[18] ≥ 0∧-2 + r[18] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 ≥ 0∧(-1)Bound + r[18] + (-1)l[18] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(69) ((-1)l[18] ≥ 0∧l[18] ≥ 0∧-2 + r[18] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + r[18] + (-1)l[18] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(70) (0 ≥ 0∧0 ≥ 0∧-2 + r[18] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 ≥ 0∧-1 + (-1)Bound + r[18] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(71) (0 ≥ 0∧0 ≥ 0∧r[18] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])), ≥)∧0 ≥ 0∧1 + (-1)Bound + r[18] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(72) (EVAL_4(i[18], j[18], l[18], r[18], n[18])≥NonInfC∧EVAL_4(i[18], j[18], l[18], r[18], n[18])≥COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])∧(UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥))
(73) ((UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 ≥ 0∧0 ≥ 0)
(74) ((UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 ≥ 0∧0 ≥ 0)
(75) (0 ≥ 0∧(UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 ≥ 0)
(76) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])), ≥)∧0 = 0∧0 = 0)
(77) (j[8]=j[17]∧i[17]=i[18]∧n[8]=n[17]∧&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8]))=TRUE∧l[17]=l[18]∧r[8]=r[17]∧i[8]=i[17]∧n[17]=n[18]∧+@z(j[17], 1@z)=j[18]∧l[8]=l[17]∧r[17]=r[18] ⇒ COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥NonInfC∧COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17])≥EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(78) (>=@z(r[8], j[8])=TRUE∧>=@z(-@z(r[8], 1@z), j[8])=TRUE ⇒ COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥NonInfC∧COND_EVAL_33(TRUE, i[8], j[8], l[8], r[8], n[8])≥EVAL_4(i[8], +@z(j[8], 1@z), l[8], r[8], n[8])∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(79) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(80) (r[8] + (-1)j[8] ≥ 0∧-1 + r[8] + (-1)j[8] ≥ 0 ⇒ (UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥)∧0 ≥ 0∧0 ≥ 0)
(81) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(82) (-1 + r[8] + (-1)j[8] ≥ 0∧r[8] + (-1)j[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(83) (-1 + r[8] ≥ 0∧r[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(84) (r[8] ≥ 0∧1 + r[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(85) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(86) (r[8] ≥ 0∧1 + r[8] ≥ 0∧j[8] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])), ≥))
(87) (EVAL_3(i[8], j[8], l[8], r[8], n[8])≥NonInfC∧EVAL_3(i[8], j[8], l[8], r[8], n[8])≥COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])∧(UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥))
(88) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(89) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(90) ((UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 ≥ 0)
(91) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0)
(92) (j[9]=j[21]∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(93) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(94) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0)
(95) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 ≥ 0)
(96) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0)
(97) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(98) (j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(99) (j[9] ≥ 0∧r[9] ≥ 0∧-1 + r[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(100) (j[9] ≥ 0∧1 + r[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(101) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(102) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(103) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(104) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(105) (0 = 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(106) (i[2]=i[0]∧r[2]=r[0]∧n[2]=n[0]∧l[2]=l[0]∧>=@z(r[2], 2@z)=TRUE∧j[2]=j[0] ⇒ COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0])≥NonInfC∧COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0])≥EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(107) (>=@z(r[2], 2@z)=TRUE ⇒ COND_EVAL_2(TRUE, i[2], j[2], l[2], r[2], n[2])≥NonInfC∧COND_EVAL_2(TRUE, i[2], j[2], l[2], r[2], n[2])≥EVAL_3(l[2], *@z(2@z, l[2]), l[2], r[2], n[2])∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(108) (-2 + r[2] ≥ 0 ⇒ (UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(109) (-2 + r[2] ≥ 0 ⇒ (UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(110) (-2 + r[2] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥))
(111) (-2 + r[2] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(112) (r[2] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x4 + (-1)x1
POL(EVAL_4(x1, x2, x3, x4, x5)) = x4 + (-1)x3
POL(EVAL_3(x1, x2, x3, x4, x5)) = x4 + (-1)x3
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x4 + (-1)x1
POL(COND_EVAL_34(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x4 + (-1)x1
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = x5 + (-1)x4
POL(COND_EVAL_2(x1, x2, x3, x4, x5, x6)) = 1 + x5 + (-1)x4
POL(*@z(x1, x2)) = x1·x2
POL(EVAL_2(x1, x2, x3, x4, x5)) = 1 + x4 + (-1)x3
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(COND_EVAL_33(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x4 + (-1)x1
POL(COND_EVAL_31(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x4 + (-1)x1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(COND_EVAL_41(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x4 + (-1)x1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_2(TRUE, i[0], j[0], l[0], r[0], n[0]) → EVAL_3(l[0], *@z(2@z, l[0]), l[0], r[0], n[0])
COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5]) → EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_31(TRUE, i[12], j[12], l[12], r[12], n[12]) → EVAL_4(i[12], j[12], l[12], r[12], n[12])
EVAL_3(i[1], j[1], l[1], r[1], n[1]) → COND_EVAL_31(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])), i[1], j[1], l[1], r[1], n[1])
COND_EVAL_34(TRUE, i[6], j[6], l[6], r[6], n[6]) → EVAL_4(i[6], j[6], l[6], r[6], n[6])
EVAL_3(i[14], j[14], l[14], r[14], n[14]) → COND_EVAL_34(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))), i[14], j[14], l[14], r[14], n[14])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
EVAL_2(i[2], j[2], l[2], r[2], n[2]) → COND_EVAL_2(>=@z(r[2], 2@z), i[2], j[2], l[2], r[2], n[2])
COND_EVAL_41(TRUE, i[5], j[5], l[5], r[5], n[5]) → EVAL_2(i[5], j[5], l[5], -@z(r[5], 1@z), n[5])
EVAL_4(i[18], j[18], l[18], r[18], n[18]) → COND_EVAL_41(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)), i[18], j[18], l[18], r[18], n[18])
COND_EVAL_33(TRUE, i[17], j[17], l[17], r[17], n[17]) → EVAL_4(i[17], +@z(j[17], 1@z), l[17], r[17], n[17])
EVAL_3(i[8], j[8], l[8], r[8], n[8]) → COND_EVAL_33(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])), i[8], j[8], l[8], r[8], n[8])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
+@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(0) -> (14), if ((r[0] →* r[14])∧(n[0] →* n[14])∧(*@z(2@z, l[0]) →* j[14])∧(l[0] →* l[14])∧(l[0] →* i[14]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(0) -> (3), if ((r[0] →* r[3])∧(n[0] →* n[3])∧(*@z(2@z, l[0]) →* j[3])∧(l[0] →* l[3])∧(l[0] →* i[3]))
(2) -> (0), if ((l[2] →* l[0])∧(r[2] →* r[0])∧(i[2] →* i[0])∧(j[2] →* j[0])∧(n[2] →* n[0])∧(>=@z(r[2], 2@z) →* TRUE))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(0) -> (1), if ((r[0] →* r[1])∧(n[0] →* n[1])∧(*@z(2@z, l[0]) →* j[1])∧(l[0] →* l[1])∧(l[0] →* i[1]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(0) -> (8), if ((r[0] →* r[8])∧(n[0] →* n[8])∧(*@z(2@z, l[0]) →* j[8])∧(l[0] →* l[8])∧(l[0] →* i[8]))
(0) -> (9), if ((r[0] →* r[9])∧(n[0] →* n[9])∧(*@z(2@z, l[0]) →* j[9])∧(l[0] →* l[9])∧(l[0] →* i[9]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(0) -> (15), if ((r[0] →* r[15])∧(n[0] →* n[15])∧(*@z(2@z, l[0]) →* j[15])∧(l[0] →* l[15])∧(l[0] →* i[15]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (n[16]=n[9]∧+@z(j[16], 1@z)=i[9]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[9]∧r[16]=r[9]∧+@z(*@z(2@z, j[16]), 2@z)=j[9]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧1 + j[15] ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧1 + j[15] ≥ 0)
(5) (r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧1 + j[15] ≥ 0)
(6) (r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ 1 + j[15] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(7) (-1 + r[15] + (-1)j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(8) (1 + r[15] ≥ 0∧r[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(9) (n[16]=n[15]1∧r[15]=r[16]∧l[15]=l[16]∧+@z(j[16], 1@z)=i[15]1∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[15]1∧i[15]=i[16]∧+@z(*@z(2@z, j[16]), 2@z)=j[15]1∧r[16]=r[15]1 ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(10) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(11) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧1 + j[15] ≥ 0)
(12) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧1 + j[15] ≥ 0)
(13) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧1 + j[15] ≥ 0)
(14) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧1 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(15) (j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(16) (j[15] ≥ 0∧r[15] ≥ 0∧1 + r[15] ≥ 0 ⇒ 0 = 0∧2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(17) (+@z(*@z(2@z, j[16]), 2@z)=j[3]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧l[16]=l[3]∧j[15]=j[16]∧n[16]=n[3]∧r[16]=r[3]∧+@z(j[16], 1@z)=i[3]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(18) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(19) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧1 + j[15] ≥ 0)
(20) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧1 + j[15] ≥ 0)
(21) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧1 + j[15] ≥ 0)
(22) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ 1 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(23) (-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(24) (-1 + r[15] ≥ 0∧r[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(25) (r[15] ≥ 0∧1 + r[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(26) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(27) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0)
(30) (0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(31) (r[13]=r[3]1∧*@z(2@z, j[13])=j[3]1∧l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧j[13]=i[3]1∧n[3]=n[13]∧r[3]=r[13]∧n[13]=n[3]1∧j[3]=j[13]∧l[13]=l[3]1 ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(32) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(33) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(34) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(35) (j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(36) (j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ -1 + j[3] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[3] + (-1)j[3] ≥ 0)
(37) ((-1)r[3] ≥ 0∧r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ -1 + j[3] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[3] ≥ 0)
(38) (0 ≥ 0∧0 ≥ 0∧j[3] + -1 ≥ 0 ⇒ -1 + j[3] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound ≥ 0)
(39) (0 ≥ 0∧0 ≥ 0∧j[3] ≥ 0 ⇒ j[3] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound ≥ 0)
(40) (l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧*@z(2@z, j[13])=j[15]∧n[3]=n[13]∧r[3]=r[13]∧r[13]=r[15]∧j[3]=j[13]∧l[13]=l[15]∧j[13]=i[15]∧n[13]=n[15] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(41) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(42) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(43) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(44) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(45) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0)
(46) (j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0∧r[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧(-1)Bound + r[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0)
(47) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0)
(48) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧j[3] ≥ 0)
(49) (l[13]=l[9]∧l[3]=l[13]∧i[3]=i[13]∧n[13]=n[9]∧r[13]=r[9]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧n[3]=n[13]∧r[3]=r[13]∧j[13]=i[9]∧j[3]=j[13]∧*@z(2@z, j[13])=j[9] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(50) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(51) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(52) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(53) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(54) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0)
(55) (j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0∧r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0)
(56) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0)
(57) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧j[3] ≥ 0)
(58) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(59) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(60) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(62) (0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(63) (j[9]=j[21]∧n[21]=n[15]∧l[21]=l[15]∧n[9]=n[21]∧r[9]=r[21]∧r[21]=r[15]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[15]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[15] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(64) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(65) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(66) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(67) (-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(68) (-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ j[9] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(69) (-2 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 1 + j[9] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(70) (r[9] ≥ 0∧j[9] ≥ 0∧1 + r[9] ≥ 0 ⇒ 1 + j[9] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(71) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(72) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(73) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(74) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(75) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧j[9] ≥ 0∧0 ≥ 0)
(76) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(77) (j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(78) (j[9] ≥ 0∧r[9] ≥ 0∧-1 + r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(79) (j[9] ≥ 0∧1 + r[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(80) (j[9]=j[21]∧l[21]=l[3]∧r[21]=r[3]∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[3]∧n[21]=n[3]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[3] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(81) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(82) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(83) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(84) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 ≥ 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(85) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(86) (-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(87) (r[9] ≥ 0∧1 + r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(88) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(89) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(90) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(91) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(92) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(EVAL_3(x1, x2, x3, x4, x5)) = x4 + (-1)x2
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (n[16]=n[9]∧+@z(j[16], 1@z)=i[9]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[9]∧r[16]=r[9]∧+@z(*@z(2@z, j[16]), 2@z)=j[9]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(5) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(6) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(7) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-3 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(8) (r[15] ≥ 0∧j[15] ≥ 0∧-1 + r[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-2 + (-1)Bound + r[15] ≥ 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(9) (1 + r[15] ≥ 0∧j[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-1 + (-1)Bound + r[15] ≥ 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(10) (n[16]=n[15]1∧r[15]=r[16]∧l[15]=l[16]∧+@z(j[16], 1@z)=i[15]1∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[15]1∧i[15]=i[16]∧+@z(*@z(2@z, j[16]), 2@z)=j[15]1∧r[16]=r[15]1 ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(11) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(12) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(13) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(14) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(15) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ 1 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(16) (-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-3 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(17) (-1 + r[15] ≥ 0∧r[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(18) (r[15] ≥ 0∧1 + r[15] ≥ 0∧j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(19) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(20) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0)
(23) (0 = 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0)
(24) (j[9]=j[21]∧n[21]=n[15]∧l[21]=l[15]∧n[9]=n[21]∧r[9]=r[21]∧r[21]=r[15]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[15]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[15] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(25) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(26) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(27) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(28) (r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ j[9] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(29) (r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(30) (-1 + r[9] + (-1)j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(31) (r[9] ≥ 0∧-1 + r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(32) (1 + r[9] ≥ 0∧r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(33) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(34) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(35) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(36) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(37) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0)
(38) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0)
(39) (j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0)
(40) (j[9] ≥ 0∧r[9] ≥ 0∧1 + r[9] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0)
(41) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(42) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(43) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(44) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(45) (0 = 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
↳ IDP
z
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
↳ IDP
z
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(2) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(3) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(4) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(5) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ (-1)Bound + r[9] + (-1)j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + j[9] ≥ 0)
(6) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧0 = 0∧-1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(7) (-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[9] + (-1)j[9] ≥ 0∧0 = 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(8) (-1 + r[9] ≥ 0∧r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[9] ≥ 0∧0 = 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(9) (r[9] ≥ 0∧1 + r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧1 + (-1)Bound + r[9] ≥ 0∧0 = 0∧j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(10) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(11) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(2) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(3) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(4) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(5) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ -1 + j[9] ≥ 0∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(6) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] + (-1)j[9] ≥ 0∧0 = 0)
(7) (j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + (-1)Bound + r[9] + (-1)j[9] ≥ 0∧0 = 0)
(8) (j[9] ≥ 0∧r[9] ≥ 0∧-1 + r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + r[9] ≥ 0∧0 = 0)
(9) (j[9] ≥ 0∧1 + r[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧1 + (-1)Bound + r[9] ≥ 0∧0 = 0)
(10) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(11) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(2) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(3) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + (-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(4) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + (-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(5) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ -1 + (-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(6) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + (-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(7) (-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-2 + (-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(8) (r[9] ≥ 0∧j[9] ≥ 0∧-1 + r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + j[9] + (2)r[9] ≥ 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(9) (1 + r[9] ≥ 0∧j[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧2 + (-1)Bound + j[9] + (2)r[9] ≥ 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(10) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(11) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = (2)x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + (2)x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(2@z) = 2
POL(FALSE) = 0
POL(1@z) = 1
POL(undefined) = -1
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(1) -> (12), if ((l[1] →* l[12])∧(r[1] →* r[12])∧(i[1] →* i[12])∧(j[1] →* j[12])∧(n[1] →* n[12])∧(&&(>=@z(r[1], j[1]), >=@z(-@z(r[1], 1@z), j[1])) →* TRUE))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(13) -> (1), if ((r[13] →* r[1])∧(n[13] →* n[1])∧(*@z(2@z, j[13]) →* j[1])∧(l[13] →* l[1])∧(j[13] →* i[1]))
(17) -> (18), if ((r[17] →* r[18])∧(n[17] →* n[18])∧(+@z(j[17], 1@z) →* j[18])∧(l[17] →* l[18])∧(i[17] →* i[18]))
(13) -> (14), if ((r[13] →* r[14])∧(n[13] →* n[14])∧(*@z(2@z, j[13]) →* j[14])∧(l[13] →* l[14])∧(j[13] →* i[14]))
(12) -> (18), if ((r[12] →* r[18])∧(n[12] →* n[18])∧(j[12] →* j[18])∧(l[12] →* l[18])∧(i[12] →* i[18]))
(14) -> (6), if ((l[14] →* l[6])∧(r[14] →* r[6])∧(i[14] →* i[6])∧(j[14] →* j[6])∧(n[14] →* n[6])∧(&&(>=@z(r[14], j[14]), >@z(j[14], -@z(r[14], 1@z))) →* TRUE))
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(8) -> (17), if ((l[8] →* l[17])∧(r[8] →* r[17])∧(i[8] →* i[17])∧(j[8] →* j[17])∧(n[8] →* n[17])∧(&&(>=@z(r[8], j[8]), >=@z(-@z(r[8], 1@z), j[8])) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (14), if ((r[21] →* r[14])∧(n[21] →* n[14])∧(*@z(2@z, j[21]) →* j[14])∧(l[21] →* l[14])∧(j[21] →* i[14]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(6) -> (18), if ((r[6] →* r[18])∧(n[6] →* n[18])∧(j[6] →* j[18])∧(l[6] →* l[18])∧(i[6] →* i[18]))
(18) -> (5), if ((l[18] →* l[5])∧(r[18] →* r[5])∧(i[18] →* i[5])∧(j[18] →* j[5])∧(n[18] →* n[5])∧(&&(&&(>@z(2@z, l[18]), >=@z(l[18], 1@z)), >=@z(r[18], 2@z)) →* TRUE))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (14), if ((r[16] →* r[14])∧(n[16] →* n[14])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[14])∧(l[16] →* l[14])∧(+@z(j[16], 1@z) →* i[14]))
(16) -> (8), if ((r[16] →* r[8])∧(n[16] →* n[8])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[8])∧(l[16] →* l[8])∧(+@z(j[16], 1@z) →* i[8]))
(5) -> (2), if ((-@z(r[5], 1@z) →* r[2])∧(n[5] →* n[2])∧(j[5] →* j[2])∧(l[5] →* l[2])∧(i[5] →* i[2]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (1), if ((r[21] →* r[1])∧(n[21] →* n[1])∧(*@z(2@z, j[21]) →* j[1])∧(l[21] →* l[1])∧(j[21] →* i[1]))
(21) -> (8), if ((r[21] →* r[8])∧(n[21] →* n[8])∧(*@z(2@z, j[21]) →* j[8])∧(l[21] →* l[8])∧(j[21] →* i[8]))
(13) -> (8), if ((r[13] →* r[8])∧(n[13] →* n[8])∧(*@z(2@z, j[13]) →* j[8])∧(l[13] →* l[8])∧(j[13] →* i[8]))
(16) -> (1), if ((r[16] →* r[1])∧(n[16] →* n[1])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[1])∧(l[16] →* l[1])∧(+@z(j[16], 1@z) →* i[1]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (n[16]=n[9]∧+@z(j[16], 1@z)=i[9]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[9]∧r[16]=r[9]∧+@z(*@z(2@z, j[16]), 2@z)=j[9]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧2 + j[15] ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧2 + j[15] ≥ 0)
(5) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧2 + j[15] ≥ 0∧0 ≥ 0)
(6) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧2 + j[15] ≥ 0∧0 = 0)
(7) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧3 + j[15] ≥ 0∧0 = 0)
(8) (1 + r[15] ≥ 0∧j[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧3 + j[15] ≥ 0∧0 = 0)
(9) (n[16]=n[15]1∧r[15]=r[16]∧l[15]=l[16]∧+@z(j[16], 1@z)=i[15]1∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[15]1∧i[15]=i[16]∧+@z(*@z(2@z, j[16]), 2@z)=j[15]1∧r[16]=r[15]1 ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(10) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(11) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧2 + j[15] ≥ 0)
(12) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧2 + j[15] ≥ 0)
(13) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0)
(14) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(15) (j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0 ⇒ 3 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(16) (j[15] ≥ 0∧1 + r[15] ≥ 0∧r[15] ≥ 0 ⇒ 3 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(17) (+@z(*@z(2@z, j[16]), 2@z)=j[3]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧l[16]=l[3]∧j[15]=j[16]∧n[16]=n[3]∧r[16]=r[3]∧+@z(j[16], 1@z)=i[3]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(18) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(19) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧2 + j[15] ≥ 0)
(20) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧2 + j[15] ≥ 0)
(21) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 ≥ 0∧2 + j[15] ≥ 0)
(22) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(23) (j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧3 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(24) (j[15] ≥ 0∧-1 + r[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧3 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(25) (j[15] ≥ 0∧r[15] ≥ 0∧1 + r[15] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧3 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(26) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(27) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(28) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) (0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0)
(30) (0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0)
(31) (r[13]=r[3]1∧*@z(2@z, j[13])=j[3]1∧l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧j[13]=i[3]1∧n[3]=n[13]∧r[3]=r[13]∧n[13]=n[3]1∧j[3]=j[13]∧l[13]=l[3]1 ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(32) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(33) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(34) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(35) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(36) (j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧j[3] ≥ 0∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(37) (j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0∧r[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧j[3] ≥ 0∧(-1)Bound + r[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(38) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧j[3] ≥ 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(39) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧1 + j[3] ≥ 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(40) (l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧*@z(2@z, j[13])=j[15]∧n[3]=n[13]∧r[3]=r[13]∧r[13]=r[15]∧j[3]=j[13]∧l[13]=l[15]∧j[13]=i[15]∧n[13]=n[15] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(41) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(42) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(43) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(44) (r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0)
(45) (r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧0 = 0∧0 = 0)
(46) (r[3] ≥ 0∧(-1)r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧(-1)Bound + r[3] ≥ 0∧0 = 0∧0 = 0)
(47) (0 ≥ 0∧0 ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0)
(48) (0 ≥ 0∧0 ≥ 0∧j[3] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧1 + j[3] ≥ 0∧0 = 0∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0)
(49) (l[13]=l[9]∧l[3]=l[13]∧i[3]=i[13]∧n[13]=n[9]∧r[13]=r[9]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧n[3]=n[13]∧r[3]=r[13]∧j[13]=i[9]∧j[3]=j[13]∧*@z(2@z, j[13])=j[9] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(50) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(51) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(52) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧j[3] ≥ 0)
(53) (r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧(-1)Bound + r[3] + (-1)j[3] ≥ 0)
(54) (r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[3] + (-1)j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(55) (r[3] ≥ 0∧j[3] + -1 ≥ 0∧(-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(56) (0 ≥ 0∧j[3] + -1 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(57) (0 ≥ 0∧j[3] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(58) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(59) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(60) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(61) (0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0)
(62) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(63) (j[9]=j[21]∧n[21]=n[15]∧l[21]=l[15]∧n[9]=n[21]∧r[9]=r[21]∧r[21]=r[15]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[15]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[15] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(64) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(65) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(66) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(67) (r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ -1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0)
(68) (r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + j[9] ≥ 0∧0 = 0)
(69) (-1 + r[9] + (-1)j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧j[9] ≥ 0∧0 = 0)
(70) (1 + r[9] ≥ 0∧r[9] ≥ 0∧j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧j[9] ≥ 0∧0 = 0)
(71) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(72) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(73) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(74) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(75) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ -1 + j[9] ≥ 0∧0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(76) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧-1 + j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(77) (j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(78) (j[9] ≥ 0∧1 + r[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(79) (j[9]=j[21]∧l[21]=l[3]∧r[21]=r[3]∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[3]∧n[21]=n[3]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[3] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(80) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(81) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(82) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧-1 + j[9] ≥ 0)
(83) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧-1 + j[9] ≥ 0)
(84) (-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧-1 + j[9] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(85) (j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧j[9] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(86) (j[9] ≥ 0∧-1 + r[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧j[9] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(87) (j[9] ≥ 0∧r[9] ≥ 0∧1 + r[9] ≥ 0 ⇒ 0 = 0∧j[9] ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0)
(88) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(89) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(90) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(91) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(92) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(EVAL_3(x1, x2, x3, x4, x5)) = x4 + (-1)x2
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(21) -> (3), if ((r[21] →* r[3])∧(n[21] →* n[3])∧(*@z(2@z, j[21]) →* j[3])∧(l[21] →* l[3])∧(j[21] →* i[3]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (n[16]=n[9]∧+@z(j[16], 1@z)=i[9]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[9]∧r[16]=r[9]∧+@z(*@z(2@z, j[16]), 2@z)=j[9]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(5) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(6) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧1 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(7) (j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(8) (j[15] ≥ 0∧1 + r[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧(-1)Bound + r[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(9) (n[16]=n[15]1∧r[15]=r[16]∧l[15]=l[16]∧+@z(j[16], 1@z)=i[15]1∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[15]1∧i[15]=i[16]∧+@z(*@z(2@z, j[16]), 2@z)=j[15]1∧r[16]=r[15]1 ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(10) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(11) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(12) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(13) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ 1 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0)
(14) (-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧1 + j[15] ≥ 0∧0 = 0)
(15) (-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧2 + j[15] ≥ 0∧0 = 0)
(16) (r[15] ≥ 0∧1 + r[15] ≥ 0∧j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧(-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0∧2 + j[15] ≥ 0∧0 = 0)
(17) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(18) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(20) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(21) (0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(22) (j[9]=j[21]∧n[21]=n[15]∧l[21]=l[15]∧n[9]=n[21]∧r[9]=r[21]∧r[21]=r[15]∧i[9]=i[21]∧l[9]=l[21]∧j[21]=i[15]∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[15] ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(23) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(24) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(25) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(26) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧j[9] ≥ 0)
(27) (r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(28) (-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧-2 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(29) (r[9] ≥ 0∧j[9] ≥ 0∧-1 + r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(30) (1 + r[9] ≥ 0∧j[9] ≥ 0∧r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0)
(31) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(32) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(33) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(34) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 ≥ 0∧j[9] ≥ 0)
(35) (-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧j[9] ≥ 0)
(36) (-1 + r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[9] ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(37) (-2 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(38) (r[9] ≥ 0∧j[9] ≥ 0∧1 + r[9] ≥ 0 ⇒ 0 = 0∧0 = 0∧1 + j[9] ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(39) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(40) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (0 ≥ 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0)
(43) (0 = 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(2@z) = 2
POL(FALSE) = 0
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(21) -> (15), if ((r[21] →* r[15])∧(n[21] →* n[15])∧(*@z(2@z, j[21]) →* j[15])∧(l[21] →* l[15])∧(j[21] →* i[15]))
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(21) -> (9), if ((r[21] →* r[9])∧(n[21] →* n[9])∧(*@z(2@z, j[21]) →* j[9])∧(l[21] →* l[9])∧(j[21] →* i[9]))
(9) -> (21), if ((l[9] →* l[21])∧(r[9] →* r[21])∧(i[9] →* i[21])∧(j[9] →* j[21])∧(n[9] →* n[21])∧(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (j[9]=j[21]∧j[21]=i[9]1∧n[9]=n[21]∧r[9]=r[21]∧i[9]=i[21]∧l[9]=l[21]∧l[21]=l[9]1∧r[21]=r[9]1∧&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z))=TRUE∧*@z(2@z, j[21])=j[9]1∧n[21]=n[9]1 ⇒ COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥NonInfC∧COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21])≥EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(2) (>=@z(j[9], 1@z)=TRUE∧>=@z(r[9], j[9])=TRUE∧>=@z(-@z(r[9], 1@z), j[9])=TRUE ⇒ COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥NonInfC∧COND_EVAL_32(TRUE, i[9], j[9], l[9], r[9], n[9])≥EVAL_3(j[9], *@z(2@z, j[9]), l[9], r[9], n[9])∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥))
(3) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(4) (-1 + j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0)
(5) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ -1 + j[9] ≥ 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧(-1)Bound + (2)r[9] + (-1)j[9] ≥ 0)
(6) (-1 + r[9] + (-1)j[9] ≥ 0∧r[9] + (-1)j[9] ≥ 0∧-1 + j[9] ≥ 0 ⇒ (-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧-1 + j[9] ≥ 0)
(7) (-2 + r[9] + (-1)j[9] ≥ 0∧-1 + r[9] + (-1)j[9] ≥ 0∧j[9] ≥ 0 ⇒ -1 + (-1)Bound + (2)r[9] + (-1)j[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧j[9] ≥ 0)
(8) (r[9] ≥ 0∧1 + r[9] ≥ 0∧j[9] ≥ 0 ⇒ 3 + (-1)Bound + j[9] + (2)r[9] ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧j[9] ≥ 0)
(9) (EVAL_3(i[9], j[9], l[9], r[9], n[9])≥NonInfC∧EVAL_3(i[9], j[9], l[9], r[9], n[9])≥COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥))
(10) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 = 0∧(UIncreasing(COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = 1 + (2)x4 + (-1)x2
POL(COND_EVAL_32(x1, x2, x3, x4, x5, x6)) = -1 + (2)x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(1@z) = 1
POL(undefined) = -1
EVAL_3(i[9], j[9], l[9], r[9], n[9]) → COND_EVAL_32(&&(&&(>=@z(r[9], j[9]), >=@z(-@z(r[9], 1@z), j[9])), >=@z(j[9], 1@z)), i[9], j[9], l[9], r[9], n[9])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
COND_EVAL_32(TRUE, i[21], j[21], l[21], r[21], n[21]) → EVAL_3(j[21], *@z(2@z, j[21]), l[21], r[21], n[21])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(16) -> (9), if ((r[16] →* r[9])∧(n[16] →* n[9])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[9])∧(l[16] →* l[9])∧(+@z(j[16], 1@z) →* i[9]))
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(13) -> (9), if ((r[13] →* r[9])∧(n[13] →* n[9])∧(*@z(2@z, j[13]) →* j[9])∧(l[13] →* l[9])∧(j[13] →* i[9]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(16) -> (3), if ((r[16] →* r[3])∧(n[16] →* n[3])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[3])∧(l[16] →* l[3])∧(+@z(j[16], 1@z) →* i[3]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (n[16]=n[15]1∧r[15]=r[16]∧l[15]=l[16]∧+@z(j[16], 1@z)=i[15]1∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[15]1∧i[15]=i[16]∧+@z(*@z(2@z, j[16]), 2@z)=j[15]1∧r[16]=r[15]1 ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(5) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(6) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧1 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(7) (j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-3 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(8) (j[15] ≥ 0∧r[15] ≥ 0∧-1 + r[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-2 + (-1)Bound + r[15] ≥ 0∧0 = 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(9) (j[15] ≥ 0∧1 + r[15] ≥ 0∧r[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧-1 + (-1)Bound + r[15] ≥ 0∧0 = 0∧2 + j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(10) (+@z(*@z(2@z, j[16]), 2@z)=j[3]∧r[15]=r[16]∧l[15]=l[16]∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧l[16]=l[3]∧j[15]=j[16]∧n[16]=n[3]∧r[16]=r[3]∧+@z(j[16], 1@z)=i[3]∧i[15]=i[16] ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(11) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(12) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(13) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧1 + j[15] ≥ 0)
(14) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧1 + j[15] ≥ 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0)
(15) (j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0∧r[15] + (-1)j[15] ≥ 0 ⇒ 1 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(16) (j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧-3 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(17) (j[15] ≥ 0∧-1 + r[15] ≥ 0∧r[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧-2 + (-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(18) (j[15] ≥ 0∧r[15] ≥ 0∧1 + r[15] ≥ 0 ⇒ 2 + j[15] ≥ 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧0 = 0∧0 = 0∧0 = 0∧-1 + (-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(19) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(20) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧1 ≥ 0)
(21) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧1 ≥ 0)
(22) (1 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0)
(23) (0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧1 ≥ 0)
(24) (r[13]=r[3]1∧*@z(2@z, j[13])=j[3]1∧l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧j[13]=i[3]1∧n[3]=n[13]∧r[3]=r[13]∧n[13]=n[3]1∧j[3]=j[13]∧l[13]=l[3]1 ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(25) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(26) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧-1 + j[3] ≥ 0)
(27) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧-1 + j[3] ≥ 0)
(28) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧-1 + j[3] ≥ 0)
(29) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(30) (j[3] + -1 ≥ 0∧r[3] ≥ 0∧(-1)r[3] ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(31) (j[3] + -1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧-1 + j[3] ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(32) (j[3] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧j[3] ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
(33) (l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧*@z(2@z, j[13])=j[15]∧n[3]=n[13]∧r[3]=r[13]∧r[13]=r[15]∧j[3]=j[13]∧l[13]=l[15]∧j[13]=i[15]∧n[13]=n[15] ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(34) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(35) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧-1 + j[3] ≥ 0)
(36) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 ≥ 0∧-1 + j[3] ≥ 0)
(37) (j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + j[3] ≥ 0∧0 ≥ 0)
(38) (j[3] + (-1)r[3] ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(39) ((-1)r[3] ≥ 0∧r[3] ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(40) (0 ≥ 0∧0 ≥ 0∧j[3] + -1 ≥ 0 ⇒ 0 = 0∧0 = 0∧-1 + j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(41) (0 ≥ 0∧0 ≥ 0∧j[3] ≥ 0 ⇒ 0 = 0∧0 = 0∧j[3] ≥ 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(42) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(43) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(44) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(45) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(46) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x4 + (-1)x2
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(2@z) = 2
POL(FALSE) = 1
POL(>@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(13) -> (3), if ((r[13] →* r[3])∧(n[13] →* n[3])∧(*@z(2@z, j[13]) →* j[3])∧(l[13] →* l[3])∧(j[13] →* i[3]))
(3) -> (13), if ((l[3] →* l[13])∧(r[3] →* r[13])∧(i[3] →* i[13])∧(j[3] →* j[13])∧(n[3] →* n[13])∧(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)) →* TRUE))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (r[13]=r[3]1∧*@z(2@z, j[13])=j[3]1∧l[3]=l[13]∧i[3]=i[13]∧&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z))=TRUE∧j[13]=i[3]1∧n[3]=n[13]∧r[3]=r[13]∧n[13]=n[3]1∧j[3]=j[13]∧l[13]=l[3]1 ⇒ COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥NonInfC∧COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13])≥EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(2) (>=@z(j[3], 1@z)=TRUE∧>=@z(r[3], j[3])=TRUE∧>@z(j[3], -@z(r[3], 1@z))=TRUE ⇒ COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥NonInfC∧COND_EVAL_35(TRUE, i[3], j[3], l[3], r[3], n[3])≥EVAL_3(j[3], *@z(2@z, j[3]), l[3], r[3], n[3])∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥))
(3) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(4) (j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0∧j[3] + (-1)r[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(5) (j[3] + (-1)r[3] ≥ 0∧j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ (UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧-1 + j[3] ≥ 0)
(6) (j[3] + (-1)r[3] ≥ 0∧j[3] + -1 ≥ 0∧r[3] + (-1)j[3] ≥ 0 ⇒ 0 = 0∧1 + (-1)Bound + r[3] + (-1)j[3] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(7) ((-1)r[3] ≥ 0∧j[3] + -1 ≥ 0∧r[3] ≥ 0 ⇒ 0 = 0∧1 + (-1)Bound + r[3] ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(8) (0 ≥ 0∧j[3] + -1 ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧1 + (-1)Bound ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧-1 + j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(9) (0 ≥ 0∧j[3] ≥ 0∧0 ≥ 0 ⇒ 0 = 0∧1 + (-1)Bound ≥ 0∧0 = 0∧(UIncreasing(EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])), ≥)∧j[3] ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(10) (EVAL_3(i[3], j[3], l[3], r[3], n[3])≥NonInfC∧EVAL_3(i[3], j[3], l[3], r[3], n[3])≥COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(11) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥))
(14) (0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(COND_EVAL_35(x1, x2, x3, x4, x5, x6)) = 2 + x5 + (-1)x3 + (-1)x1
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = 1 + x4 + (-1)x2
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(2@z) = 2
POL(FALSE) = 1
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
COND_EVAL_35(TRUE, i[13], j[13], l[13], r[13], n[13]) → EVAL_3(j[13], *@z(2@z, j[13]), l[13], r[13], n[13])
EVAL_3(i[3], j[3], l[3], r[3], n[3]) → COND_EVAL_35(&&(&&(>=@z(r[3], j[3]), >@z(j[3], -@z(r[3], 1@z))), >=@z(j[3], 1@z)), i[3], j[3], l[3], r[3], n[3])
*@z1 ↔
&&(FALSE, FALSE)1 ↔ FALSE1
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
z
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
(13) -> (15), if ((r[13] →* r[15])∧(n[13] →* n[15])∧(*@z(2@z, j[13]) →* j[15])∧(l[13] →* l[15])∧(j[13] →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
(15) -> (16), if ((l[15] →* l[16])∧(r[15] →* r[16])∧(i[15] →* i[16])∧(j[15] →* j[16])∧(n[15] →* n[16])∧(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)) →* TRUE))
(16) -> (15), if ((r[16] →* r[15])∧(n[16] →* n[15])∧(+@z(*@z(2@z, j[16]), 2@z) →* j[15])∧(l[16] →* l[15])∧(+@z(j[16], 1@z) →* i[15]))
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)
(1) (n[16]=n[15]1∧r[15]=r[16]∧l[15]=l[16]∧+@z(j[16], 1@z)=i[15]1∧&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z))=TRUE∧n[15]=n[16]∧j[15]=j[16]∧l[16]=l[15]1∧i[15]=i[16]∧+@z(*@z(2@z, j[16]), 2@z)=j[15]1∧r[16]=r[15]1 ⇒ COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥NonInfC∧COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16])≥EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(2) (>=@z(j[15], 1@z)=TRUE∧>=@z(r[15], j[15])=TRUE∧>=@z(-@z(r[15], 1@z), j[15])=TRUE ⇒ COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥NonInfC∧COND_EVAL_3(TRUE, i[15], j[15], l[15], r[15], n[15])≥EVAL_3(+@z(j[15], 1@z), +@z(*@z(2@z, j[15]), 2@z), l[15], r[15], n[15])∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥))
(3) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0)
(4) (j[15] + -1 ≥ 0∧r[15] + (-1)j[15] ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0)
(5) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ (UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0)
(6) (r[15] + (-1)j[15] ≥ 0∧j[15] + -1 ≥ 0∧-1 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧j[15] ≥ 0∧0 = 0∧-2 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(7) (-1 + r[15] + (-1)j[15] ≥ 0∧j[15] ≥ 0∧-2 + r[15] + (-1)j[15] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧1 + j[15] ≥ 0∧0 = 0∧-3 + (-1)Bound + r[15] + (-1)j[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(8) (1 + r[15] ≥ 0∧j[15] ≥ 0∧r[15] ≥ 0 ⇒ 0 = 0∧0 = 0∧(UIncreasing(EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])), ≥)∧1 + j[15] ≥ 0∧0 = 0∧-1 + (-1)Bound + r[15] ≥ 0∧0 = 0∧0 = 0∧0 = 0)
(9) (EVAL_3(i[15], j[15], l[15], r[15], n[15])≥NonInfC∧EVAL_3(i[15], j[15], l[15], r[15], n[15])≥COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(10) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) ((UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥))
(13) (0 = 0∧(UIncreasing(COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(>=@z(x1, x2)) = -1
POL(EVAL_3(x1, x2, x3, x4, x5)) = -1 + x4 + (-1)x2
POL(COND_EVAL_3(x1, x2, x3, x4, x5, x6)) = -1 + x5 + (-1)x3 + (-1)x1
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = 1
POL(&&(x1, x2)) = 0
POL(2@z) = 2
POL(+@z(x1, x2)) = x1 + x2
POL(FALSE) = 0
POL(1@z) = 1
POL(undefined) = -1
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
COND_EVAL_3(TRUE, i[16], j[16], l[16], r[16], n[16]) → EVAL_3(+@z(j[16], 1@z), +@z(*@z(2@z, j[16]), 2@z), l[16], r[16], n[16])
EVAL_3(i[15], j[15], l[15], r[15], n[15]) → COND_EVAL_3(&&(&&(>=@z(r[15], j[15]), >=@z(-@z(r[15], 1@z), j[15])), >=@z(j[15], 1@z)), i[15], j[15], l[15], r[15], n[15])
*@z1 ↔
FALSE1 → &&(FALSE, FALSE)1
TRUE1 → &&(TRUE, TRUE)1
+@z1 ↔
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
eval_3(x0, x1, x2, x3, x4)
eval_1(x0, x1, x2, x3, x4)
eval_4(x0, x1, x2, x3, x4)
Cond_eval_3(TRUE, x0, x1, x2, x3, x4)
Cond_eval_41(TRUE, x0, x1, x2, x3, x4)
Cond_eval_31(TRUE, x0, x1, x2, x3, x4)
Cond_eval_4(TRUE, x0, x1, x2, x3, x4)
Cond_eval_1(TRUE, x0, x1, x2, x3, x4)
Cond_eval_32(TRUE, x0, x1, x2, x3, x4)
Cond_eval_2(TRUE, x0, x1, x2, x3, x4)
Cond_eval_33(TRUE, x0, x1, x2, x3, x4)
eval_2(x0, x1, x2, x3, x4)
Cond_eval_34(TRUE, x0, x1, x2, x3, x4)
Cond_eval_35(TRUE, x0, x1, x2, x3, x4)
Cond_eval_11(TRUE, x0, x1, x2, x3, x4)